Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
f2(g1(X), Y) -> f2(X, n__f2(n__g1(X), activate1(Y)))
f2(X1, X2) -> n__f2(X1, X2)
g1(X) -> n__g1(X)
activate1(n__f2(X1, X2)) -> f2(activate1(X1), X2)
activate1(n__g1(X)) -> g1(activate1(X))
activate1(X) -> X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f2(g1(X), Y) -> f2(X, n__f2(n__g1(X), activate1(Y)))
f2(X1, X2) -> n__f2(X1, X2)
g1(X) -> n__g1(X)
activate1(n__f2(X1, X2)) -> f2(activate1(X1), X2)
activate1(n__g1(X)) -> g1(activate1(X))
activate1(X) -> X
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__f2(X1, X2)) -> F2(activate1(X1), X2)
F2(g1(X), Y) -> F2(X, n__f2(n__g1(X), activate1(Y)))
ACTIVATE1(n__g1(X)) -> G1(activate1(X))
ACTIVATE1(n__g1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__f2(X1, X2)) -> ACTIVATE1(X1)
F2(g1(X), Y) -> ACTIVATE1(Y)
The TRS R consists of the following rules:
f2(g1(X), Y) -> f2(X, n__f2(n__g1(X), activate1(Y)))
f2(X1, X2) -> n__f2(X1, X2)
g1(X) -> n__g1(X)
activate1(n__f2(X1, X2)) -> f2(activate1(X1), X2)
activate1(n__g1(X)) -> g1(activate1(X))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__f2(X1, X2)) -> F2(activate1(X1), X2)
F2(g1(X), Y) -> F2(X, n__f2(n__g1(X), activate1(Y)))
ACTIVATE1(n__g1(X)) -> G1(activate1(X))
ACTIVATE1(n__g1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__f2(X1, X2)) -> ACTIVATE1(X1)
F2(g1(X), Y) -> ACTIVATE1(Y)
The TRS R consists of the following rules:
f2(g1(X), Y) -> f2(X, n__f2(n__g1(X), activate1(Y)))
f2(X1, X2) -> n__f2(X1, X2)
g1(X) -> n__g1(X)
activate1(n__f2(X1, X2)) -> f2(activate1(X1), X2)
activate1(n__g1(X)) -> g1(activate1(X))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F2(g1(X), Y) -> F2(X, n__f2(n__g1(X), activate1(Y)))
ACTIVATE1(n__f2(X1, X2)) -> F2(activate1(X1), X2)
ACTIVATE1(n__g1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__f2(X1, X2)) -> ACTIVATE1(X1)
F2(g1(X), Y) -> ACTIVATE1(Y)
The TRS R consists of the following rules:
f2(g1(X), Y) -> f2(X, n__f2(n__g1(X), activate1(Y)))
f2(X1, X2) -> n__f2(X1, X2)
g1(X) -> n__g1(X)
activate1(n__f2(X1, X2)) -> f2(activate1(X1), X2)
activate1(n__g1(X)) -> g1(activate1(X))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.